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Abstract—When a function’s value is known at several distinct
points, there exist “numerical differentiation” formulas which
provide estimates for the first derivative, and with various error
bounds. In fact, many times the numerical differentiation formula
chosen must be complex to avoid intolerable error as shown
below. However, in computer simulations, as well as in real-time
programming, while several past data points might be known, as
well as the present data, the future is not yet known or computed!

This renders those formulas, at least as classically presented,
useless for both real-time computing and for simulations. This
research began as an inquiry to discover similar formulas usable
when only the past and present, but not the future, are known.
The author uncovered an extremely obscure corner of numerical
analysis, where solutions to these dilemmas are feasible. An
extremely simple algorithm can produce suitable formulas, for
any number of data points, not only for the first derivative but
also higher-order derivatives. Moreover, the data points can be
irregularly spaced, and it is straight-forward to calculate the
appropriate error terms, and the impact of noisy data.

The standard presentation of these methods would require
Multivariate Calculus, one or two semesters of Real Analysis, and
one semester of Numerical Analysis. However, many computer
science graduate students have only Calculus I and Calculus II.
This is a novel presentation of this extremely obscure topic, meant
not only to publicize it among simluation-oriented computer
scientists and those working in real-time computing, but also to
be comprehensible to someone who has 2–3 semesters of calculus
and nothing more. A rigorous proof of correctness is provided in
the appendix, as well as sample code for the algorithm in SAGE—
the open source competitor to Maple, Mathematica, Matlab and
Magma.

Index Terms—Simulations, Numerical Differentiation, Dis-
cretization Error.

I. INTRODUCTION

When one has some data, perhaps about the position of an
aircraft, at times one wants to calculate the first derivative.
Perhaps the aircraft is being modeled by a simulation, and
one has position data at discrete time slices separated by h
seconds. Obviously, one can estimate the derivative by

f(t)− f(t− h)
h

≈ f ′(t)

but because h is an actual length of time, and not infinitesimal,
this produces some error, usually called discretization error.

In numerical analysis, this is called the “backward differ-
ence” formula. In Section V, we will show that its error is
(h/2)f ′′(t) +O

(
h2f ′′′(t)

)
, which is well known.

Many people working in the overlap of computer science
and mathematics know that the “center difference” formula

f(t+ h)− f(t− h)
2h

≈ f ′(t)

produces slightly less error and the much less well-known
“four point” formula is„
−1

3

« »
f(t + 2h)− f(t− 2h)

4h

–
+

„
4

3

« »
f(t + h)− f(t− h)

2h

–
≈ f ′(t)

which is better still. Nonetheless, both of these numerical
differentiation formulas are not useful in simulations, because
if f(t) represents the present moment, then f(t+h) and f(t+
2h) represent the future, which has not been calculated yet,
(or is not yet known.)

Accordingly, many simulation experts go with the “back-
ward difference formula” given above, which is wasteful.
Instead, we will show that one can use

1

h

»
1

4
f(t− 4h)− 4

3
f(t− 3h) + 3f(t− 2h)− 4f(t− h) +

25

12
f(t)

–
which while it look strange, requires no knowledge of the

future, and produces

f ′(t)− h4

5
f (5)(t) +O

(
h5f (6)(t)

)
and since h ≈ 10−4 or 10−3 in many applications, there is
virtually no discretization error. We will use this example as
the “main example” of the paper, and derive it, as well as
derive its error terms. Other sample formulas that the algorithm
can produce are given in Figure 1.

Such formulas look miraculous but they have an algorithmic
derivation. In this paper, we will explore how to construct such
formulas that do not require knowledge of the future, for any
number of data points, as well as how they can be adapted
to irregular spacings, how the error terms can be simply and
exactly derived, and how similar formulas can be derived for
higher-order derivatives.



Before we describe the algorithm, we will examine the
numerical motivation for finding them in Section II and
briefly examine some hypothetical applications in Section III.
The algorithm itself is given in Figure 2 and is discussed
in Section IV, followed by two warm-up calculations given
in Section V. Then the technique for calculating the error
(and verifying the correctness of the output) is described in
Section VI. Next we discuss the impact of noise in Section VII.
We give a survey of the classic expositions on numerical dif-
ferentiation in Section IX, to demonstrate that these techniques
are extremely rare inside the numerical analysis community,
and so therefore it is unsurprising that they are essentially
unknown outside of it.

A rigorous proof of the correctness of the method, along
with the error terms, is given in the appendices, but most
readers will not necessarily have the background for what is
presented there. Instead, the techniques of Section VI allow
the reader to verify the formula outputted by the algorithm
for any particular inputs, and an example of this is found in
Figure 3. It is hoped that the paper, without appendices, is
comprehensible to anyone with a full year of calculus, though
this is false for the appendix. The appendices can be found in
the full version of the paper on the author’s webpage, at the
URL given at the top of the front page.

A. Notation

As is customary, the second and third derivatives are written
f ′′(t) and f ′′′(t) while the fourth and fifth are written f (4)(t)
and f (5)(t). Furthermore, f (k)(t) means the kth derivative for
any k ≥ 1. Mathematicians, and this paper, denote the upper-
left-hand entry of a matrix A as A11, not A00, as would be
required by some programming languages. The basic time slice
of a simulation will be denoted h. That is to say, the data points
available are assumed to be f(0), f(h), f(2h), f(3h), . . . .

II. NUMERICAL MOTIVATION

If one is using a simulation to compute something, usually
it is because no mathematical function to compute it is
known. Otherwise, one would not bother with a simulation,
except perhaps for pedagogical purposes. Nonetheless, it is
useful to explore some explicit example functions to see the
discretization error. Here we take two functions which could
come up in the analysis of a physical system, in a first-semester
course of Differential Equations.

We consider the functions

φ(t) = e−4t and ψ(t) = e−4t(sin 10t)

at t = 1, and time slice of 10 msec (i.e. h = 10−2.) We
compare the performance of the backward-difference formula
(denoted BDF) and main example (denoted ME). The data is
given in Table I.

While 2.03% error could be perhaps overlooked in the case
of φ(t), the 9.12% error perhaps cannot, in the case of ψ(t).
Of course, h = 0.01 is a bit large, and more typical values
would be h = 0.001 or h = 0.0001. Yet, that means that the
computation would have to run 10× or 100× as long.

TABLE I
A NUMERICAL EXAMPLE

phi(t) psi(t)
Actual -0.073262555555 -0.113824934424

Predicted by ME -0.073262515448 -0.113828751659
Absolute Error, ME 0.000000040107 -0.000003817234
Relative Error, ME -0.000054743602% 0.003353601199%

Predicted by BDF -0.074747540288 -0.124203517934
Absolute Error, BDF -0.001484984733 -0.010378583510
Relative Error, BDF 2.026935480971% 9.118022832760%

The greater accuracy can then be realized as a tradeoff
against running time. Suppose the tolerable error is some fixed
amount. If the h required to achieve that amount is much less
with a more complex numerical differentiation formula, than
another, surely the ratios of the hs is the factor of the speed-up.
However, this is overly simplistic, as a researcher can choose
the granularity of the simulation for many reasons, not just
the discretization error of some rate that is being calculated.

Also, we will explore in Section VII how making h too
small can cause both rounding error and instrumentation error
to become large.

III. POTENTIAL APPLICATIONS

There are too many uses of calculating derivatives to even
be summarized here. However, in this section we present
five hypothetical applications which demonstrate the potential
uses of being able to handle irregular spacings, being able
to achieve high accuracy, or being able to take higher-order
derivatives.

First, in guided missile tests, an altimeter is a simple and
off-the-shelf component, but taking the derivative accurately
would convert this into a vertical velocity measurement. Note,
this is not the same as airspeed, which while easily measured
with a Pitot tube, and includes the horizontal component
of velocity. In fact, in this case, second, third and fourth
derivatives would be useful, as acceleration, jerk, and jostle
are important parameters for any guided missile.

Second, in modeling a biological system of three or more
competing components (e.g. viruses, red cells, and white
cells) the microscope might be connected to a camera, and
either an automated system, or more realistically, a graduate
student, would count the number of such visible inside a given
grid square. These population counts could not be taken too
close together in time, otherwise there would be too many
photographs to analyze during the length of the experiment.
Nonetheless, it might be useful to discover the rates of growth,
to a high level of accuracy. This is particularly important if the
rates of growth are actually similar, yet it is pivotal to know
which is growing faster than which.

Third, from the purchasing records of medieval colleges
(e.g. New College, Oxford, established in 1379), it has become
fashionable to reverse engineer the prices of commodities
[10] [8]. This enables price data to become known where it
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”

Fig. 1. Numerical Differentiation Formulas that use Past and Present but not Future, as were found by the algorithm in Figure 2.

would otherwise be unavailable. But because such 600-year-
old purchasing records have missing “bits”, where a record or
entry is missing or has been destroyed, techniques are needed
which can deal with “lacunae,” which are gaps in the data.
When the data is sequential, formulas like those given in
Figure 1 can be used, but when the data has lacunae, then
the algorithm can be called to generate a custom formula that
does not involve the missing data point.

Fourth, many financial instruments are traded around the
clock, “24-7,” but the trading is divided into Monday through
Friday periods during normal hours, when the market is open,
as well as trading that occurs while the market is closed in
the evening and night or weekends. The trading while the
market is open results in data that is freely available through
web-based tools such as “Yahoo! Finance,” whereas the after-
hours data is not as easily available in some cases. Let f(t)
be the closing price of a financial security on a given day. On
a Wednesday, the 5 most-recent data points would represent
f(t), f(t−h), f(t−2h), f(t−5h) and f(t−6h), being namely
the present day, last Tuesday, last Monday, last Friday, and last
Thursday, if h is one day. Thus one needs to be able to take
the derivatives when the samples are irregularly spaced.

Fifth, the problem of a rocket taking off is a classic in any
Differential Equations course. When the instructor includes
one feature of realism, such as a rocket meeting with air-
resistance, the reduction in mass because of the burnt fuel, or
the declining strength of gravity at very high altitudes, then
the problem becomes somewhat challenging. But when two
or three of these phenomena are included, then the problem is
analytically intractable, but can be addressed via a simulation.
Such a simulation, at each time slice, would calculate several
forces, divide by the instantaneous mass, and then get the
acceleration. Then numerical differentiation could be used to
calculate the jerk and jostle.

IV. THE ALGORITHM

The algorithm below is more general, as it can find second,
third, or arbitrarily higher derivatives. For the kth derivative,

at least k+ 1 data points are needed. The spacing of the data
points can be highly irregular. The notation used is f(t+δih),
and in a simulation the δi ≤ 0, because the future is not
yet known. For example, the formula presented in Section 2
used the present moment and four previous time slices, as data
points. This would be

δ1 = −4, δ2 = −3, δ3 = −2, δ4 = −1, δ5 = 0

in this notation. Note, that each δ must be distinct, i.e. no two
δs can be equal.

The algorithm, given in Figure 2, is nothing more than
a matrix problem of the form A~c = ~b and in fact, it is a
“Vandermonde” matrix [11] named for Alexandre-Théophile
Vandermonde. This matrix is shown in Figure 4 of the ap-
pendices, and will appear in the proof of correctness of the
algorithm. The algorithm, while simple, is probably difficult
to understand without reading the proof, but we can verify
the validity of its output easily for any particular inputs. In
fact, we will do so, in Figure 3, for the “main example” of
the paper. For any other inputs, the verification would proceed
extremely similarly. Most readers will want to skip the proof.

As stated earlier, only exceptionally pathological functions
will fail to be “amenable of type (h, n)”, a term defined in
Appendix A, and dealt with in Lemma 1. Such functions
are very unlikely to arise in applications. This is an obscure
technical requirement to remove pathological cases.

A. Numerical Warning on Reducing A:

The bad news is that Vandermonde matrices are known to
have extraordinarily high condition number for their size [11],
so much so that they are used to “stress test” computer algebra
systems before shipment. However, since n is the number of
data points used by the formula, and in any practical applied
scenario, n < 11, this will not be a problem. Computer
algebra packages like Maple [1] or SAGE [2] can solve these
matrix problems exactly, and not using floating-point notation
at all, thus avoiding rounding error entirely. To be precise, the
entries of the matrix and both vectors will be rational numbers



Input: A spacing of samples, δ1, δ2, δ3, . . . , δn, all
distinct, and some integer k such that 1 ≤ k < n.
Output: A vector ~c such that

1
hk

j=n∑
j=1

cjf(t+ δjh) = f (k)(t) +O
(
hn−kf (n)(t)

)
for any function f(t), that is “amenable of type
(h, n).”

1) Define a n× n matrix A such that Aij = (δj)i−1.
2) Define an n-dimensional vector ~b, and let ~b = ~0,

except that bk+1 = k!.
3) Via Gaussian Elimination or some other means, find

~c such that A~c = ~b.
Note: Such a ~c always exists and is unique.

4) Return ~c.

Fig. 2. The algorithm that produced the formulas in Figure 1.

represented exactly, as the ratio of two explicit integers which
are themselves stored as binary strings. For even medium-sized
problems, this is normally infeasible, but these A will not have
more than a hundred entries or so, and therefore there is no
difficulty in using this exact representation.

V. TWO SIMPLE EXAMPLES

We start with Taylor’s Theorem from calculus, an important
infinite sum:

f(t+ h) = f(t) +
i=∞∑
i=1

hi

i!
f (i)(t)

which can be truncated early for h � 1, to produce a finite
sum, using big-Oh notation

f(t+ h) = f(t) +

(
i=n∑
i=1

hi

i!
f (i)(t)

)
+O

(
hn+1f (n+1)(t)

)
and note that this is the same big-Oh used when explaining to
students that sorting is O (n log n) time. It is justified because
every term after the nth will be a multiple of hn+1, and since
h � 1 then the hn+1 term will dominate the sum. We will
clarify precisely when this use of big-Oh notation is correct
in the formal proof given in Appendix A. For now, we point
out that the big-Oh, instead of being as the data-input length
goes to infinity, represents the granularity of the calculation
(here h) going to zero.

For the backward-difference we select n = 2 and then have

f(t+ h) = f(t) + hf ′(t) +
h2

2
f ′′(t) +O

(
h3f ′′′(t)

)
and so

f(t+ h)− f(t)
h

= f ′(t) +
h

2
f ′′(t) +O

(
h2f ′′′(t)

)
therefore the error is (h/2)f ′′(t) +O

(
h2f ′′′(t)

)
.

Meanwhile, for the “main example,” we offer two roads
to proof. The main example is, of course, a special case
of the more general theorem. However, a direct proof is
provided in Figure 3, for two reasons. First, the rigorous proof
of the theorem is relatively arcane and might be easier to
understand after looking over the more calculation-oriented
proof in Figure 3. Second, if an undergraduate must read this
paper, note that the formal proof requires some facts learnt
during Real Analysis and Linear Algebra, where as the simpler
proof in the figure requires only Taylor’s Theorem, which is
usually taught in Calculus II or sometimes Calculus III or
even Calculus I.

A. Note on the Error Terms:

Typically, the error term of Taylor’s Theorem, for an nth-
degree Taylor polynomial approximating f(t+h) by expansion
around f(t) is stated via

f(t) +
i=n∑
i=1

hi

i!
f (i)(t) = f(t+ h)− hn

n!
f (n+1)(ξ)

where ξ is some number between t and t+ h.
However, this is non-descriptive for us for several reasons.

First, the computer science audience is already extremely
familiar with Big-Oh notation. Second, we wish to model
derivatives of f(t) and so our error bounds really should be
in terms of those derivatives, and not f itself, otherwise one
is comparing apples and oranges. Third, a happy and very
unexpected coincidence is that the proof works out to be much
simpler in Big-Oh notation. Naturally, this is not the first use
of Big-Oh notation in real analysis, as Landau is known to
have used Big-Oh notation between the world wars [12].

VI. EXPLORING THE DISCRETIZATION ERROR

It turns out that the error can be explored very precisely,
independent of the notions of “amenability” which make the
proof of the main theorem a bit complicated. All that is needed
is to extend the Taylor polynomial a few extra terms, and
calculate a particular double summation. We begin again, with
Taylor’s Theorem, but now with extra terms:

f(t+ δ1h) = f(t) +
i=n+4∑

i=1

δi
1h

i

i!
f (i)(t) +O

(
hn+5f (n+5)(t)

)
and now sum this over all n data points

j=n∑
j=1

cjf(t+ δjh) =
j=n∑
j=1

cjf(t) (1)

+
j=n∑
j=1

i=n+4∑
i=1

cjδ
i
jh

i

i!
f (i)(t) +O

(
hn+5f (n+5)(t)

)
and from the double summation in Equation (1) you can see
that the coefficient of hif (i)(t), to be denoted Ei, is given by

Ei =
j=n∑
j=1

cjδ
i
j

i!



We start with Taylor’s Theorem, restricted to seven terms, which is

f(t+ h) = f(t) + hf ′(t) +
h2

2
f ′′(t) +

h3

3!
f ′′′(t) +

h4

4!
f (4)(t) +

h5

5!
f (5)(t) +

h6

6!
f (6)(t) +O

(
h7f (7)(t)

)
and apply this to each of a ∈ {0,−h,−2h,−3h,−4h} and thus obtain

f(t− 4h) = f(t)− 4

1!
hf ′(t) +

16

2!
h2f ′′(t)− 64

3!
h3f ′′′(t) +

256

4!
h4f (4)(t)− 1024

5!
h5f (5)(t) +

4096

6!
h6f (6)(t) +O

“
h7f (7)(t)

”
f(t− 3h) = f(t)− 3

1!
hf ′(t) +

9

2!
h2f ′′(t)− 27

3!
h3f ′′′(t) +

81

4!
h4f (4)(t)− 243

5!
h5f (5)(t) +

729

6!
h6f (6)(t) +O

“
h7f (7)(t)

”
f(t− 2h) = f(t)− 2

1!
hf ′(t) +

4

2!
h2f ′′(t)− 8

3!
h3f ′′′(t) +

16

4!
h4f (4)(t)− 32

5!
h5f (5)(t) +

64

6!
h6f (6)(t) +O

“
h7f (7)(t)

”
f(t− 1h) = f(t)− 1

1!
hf ′(t) +

1

2!
h2f ′′(t)− 1

3!
h3f ′′′(t) +

1

4!
h4f (4)(t)− 1

5!
h5f (5)(t) +

1

6!
h6f (6)(t) +O

“
h7f (7)(t)

”
f(t− 0h) = f(t)

and therefore we can, with much effort and patience, substitute those formulae into

1
4
f(t− 4h)− 4

3
f(t− 3h) + 3f(t− 2h)− 4f(t− h) +

25
12
f(t)

=
[(

1
4

)
(1)−

(
4
3

)
(1) + (3) (1)− (4) (1) +

(
25
12

)
(1)
]
f(t)

+
[(

1
4

)(
−4
1!

)
−
(

4
3

)(
−3
1!

)
+ (3)

(
−2
1!

)
− (4)

(
−1
1!

)
+
(

25
12

)(
0
1!

)]
hf ′(t)

+
[(

1
4

)(
16
2!

)
−
(

4
3

)(
9
2!

)
+ (3)

(
4
2!

)
− (4)

(
1
2!

)
+
(

25
12

)(
0
2!

)]
h2f ′′(t)

+
[(

1
4

)(
−64
3!

)
−
(

4
3

)(
−27
3!

)
+ (3)

(
−8
3!

)
− (4)

(
−1
3!

)
+
(

25
12

)(
0
3!

)]
h3f ′′′(t)

+
[(

1
4

)(
256
4!

)
−
(

4
3

)(
81
4!

)
+ (3)

(
16
4!

)
− (4)

(
1
4!

)
+
(

25
12

)(
0
4!

)]
h4f (4)(t)

+
[(

1
4

)(
−1024

5!

)
−
(

4
3

)(
−243

5!

)
+ (3)

(
−32
5!

)
− (4)

(
−1
5!

)
+
(

25
12

)(
0
5!

)]
h5f (5)(t)

+
[(

1
4

)(
4096
6!

)
−
(

4
3

)(
729
6!

)
+ (3)

(
64
6!

)
− (4)

(
1
6!

)
+
(

25
12

)(
0
6!

)]
h6f (6)(t) +O

(
h7f (7)(t)

)
= 0f(t) + 1hf ′(t) + 0h2f ′′(t) + 0h3f ′′′(t) + 0h4f (4)(t)− 1

5
h5f (5)(t) +

1
3
h6f (6)(t) +O

(
h7f (7)(t)

)
= hf ′(t)− h5

5
f (5)(t) +O

(
h6f (6)(t)

)
allowing us to finally conclude (by dividing both sides by h) that

1
h

[
1
4
f(t− 4h)− 4

3
f(t− 3h) + 3f(t− 2h)− 4f(t− h) +

25
12
f(t)

]
= f ′(t)− h4

5
f (5)(t) +O

(
h5f (6)(t)

)
and while this was not the shortest calculation in human history, since t ≈ 10−3 or 10−4 in most cases, then h4 makes
the error completely negligible. That is, of course, provided that the fifth derivative of f(t) is not huge, which is why
f(t) = sin

(
106t

)
cannot be used here. This will be sorted out in the appendices via Lemma 1.

Fig. 3. An Elementary Approach to Proving the “main example,” suitable for an undergraduate who has taken one year of calculus.



which is a sum that can be computed, either with a pencil or
a computer algebra package. In fact, if one adopts the syntax
convention that the 0th derivative of f(t) is f(t) itself, and
that 0!=1, then this remains true for the first sum to the right
of the equal sign as well, in Equation (1).

Using this, we can compute the following for the “main
example” of the paper:

1

h

»
1

4
f(t− 4h)− 4

3
f(t− 3h) + 3f(t− 2h)− 4f(t− h) +

25

12
f(t)

–
= 0f(t) + 1tf ′(t) + 0h2f ′′(t) + 0h3f ′′′(t) + 0h4f (4)(t)

−1

5
h5f (5)(t) +

1

3
h6f (6)(t)− 13

42
h7f (7)(t) +

5

24
h8f (8)(t)

− 9

80
h9f (9)(t) +O

“
h10f (10)(t)

”
and the SAGE code that did this is given in the next section.

Keep in mind that h = 10−4 is a common value, so the h6th
and higher terms are completely negligible.

VII. EXPLORING THE IMPACT OF NOISE

The above work is all performed under the assumption that
the functions are evaluated without error (e.g. a computer
simulation.) Errors in function evaluation can be noise in
the data (due to instrumentation issues), or rounding error.
This is distinct from the discretization error that the paper
principally addresses. However, because both rounding error
and instrumentation error are inescapable to some degree,
we will now explore their impact on the accuracy of these
methods.

Suppose a particular evaluation of f is off by a relative error
of ε. Then we can replace f(t) with (1+ε)f(t). To be general,
we can select any of the f(t+ hδi). Then we have

1

hk

"
i=nX
i=1

cif (t+ hδi)

#
. . . becomes. . .

1

hk

24cj(1 + ε)f(t+ hδj) +

i=nX
i=1,i 6=j

cif (t+ hδi)

35
=

1

hk

24cjf(t+ hδj) + cjεf(t+ hδj) +

i=nX
i=1,i 6=j

cif (t+ hδi)

35
=

cjε

hk
f(t+ hδj) +

1

hk

i=nX
i=1

cif (t+ hδi)

And so the absolute induced error is

absolute error =
cjεf(t+ hδj)

hk

and under the quite reasonable assumption that all the f ’s are
of approximately the same magnitude, then the relative error
is

relative error =
( ε

hk

)( cj∑i=n
i=1 ci

)
As you can see from that formula, the dominant effect

will be that the relative instrumentation or rounding error is

magnified by a multiplicative factor proportional to h−k. Since
k > 1, then using too small h will make any errors of these
kinds catastrophic.

In Section V, we calculated that the error for the backward-
difference formula was proportional to (h/2)f ′′(t), and for the
“main example” it was proportional to (h4/5)f (5)(t). This
means a user of the main example who uses h = 0.001
can, under the assumption that f ′′(t) ≈ f (5)(t) have the
same discretization error as a user of the backward difference
formula and h = 4 × 10−13. Likewise, for h = 0.01 in the
main example, it is equivalent to using h = 4× 10−9.

But, the consequences of this would be that instead of an
instrumentation error being multiplied by a factor of 1000, it
would be multiplied by trillions or billions.

Rounding error in computer systems using only double
floating-point numbers, to say nothing of long double, are
on the order of 2−53 or 10−15.9545··· and so a magnification of
1000× is acceptable, while a magnification of several trillion
is not.

On the other hand, most scientific instruments are not
capable of more than 4 significant digits, and so very large
h, e.g. h ≈ 0.1 should be chosen, to keep instrumentation
error low.

VIII. SAMPLE SAGE CODE

The following SAGE code will execute the algorithm given
in Figure 2 as well as the error modeling as described in
Section VI. As you can see, the former is just a matrix
computation, though A has a very special form, and the latter
is just a double summation. The proof of correctness is in the
appendices. This SAGE code was used to produce the formulas
found in Figure 1.

More information about SAGE can be found at [2].

n=5
k=1
d=[-4,-3,-2, -1, 0];
debug=false

# don’t modify what comes below this point.

A=matrix(QQ, n,n);
b=matrix(QQ, n,1);
for i in range(0, n):

b[i]=0
for j in range(0, n):

A[i, j] = d[j]ˆ(i)
b[k]=factorial(k)
c=A.inverse()*b

if (debug==true):
print "The Matrix A:"
print A
print "The Vector b:"
print b
print "The Vector c:"
print c

for i in range(0, n):
print "f(t + (",
print d[i],
print ")h) is multiplied by ",
print c[i]



print "To yield:"

for i in range(0,n+5):
answer=0;
for j in range(0,n):

answer += c[j-1] * (d[j-1]ˆi) / factorial(i)
if (i>0):

print "For tˆ%d times %dth derivative:" % \
((i-k),i),

else:
print "For tˆ%d times the function: " % \

(i-k),
print answer

Note that the c[j-1] has a j − 1 because the computer
language “Python,” upon which SAGE is built, numbers its
array entries with the first component being 0 and not 1,
likewise d[j-1].

IX. PRIOR AND RELATED WORK

In order to demonstrate the obscurity of these methods, as
well as to give the reader further reading, a survey now follows
which covers the most famous textbooks that would be used in
a first-year graduate course in Numerical Analysis or a senior-
year course for undergraduates at a highly-ranked university.

In [14, Ch. 5.7], usually the surest refuge of interesting and
rarely known algorithms, there is a discussion of numerical
derivatives, but there is no mention whatsoever of formulas
which avoid data points in the future, or even derivatives taken
with more than 3 evaluations of f(t), nor methods for second
derivatives.

On the other hand, in [3, Ch. 5.4] the general technique
of this paper is almost, but not quite, discussed under the
title “method of undetermined coefficients,” a name which
numerous mathematical techniques share. That book does not
cover the case of irregularly spacings, and only considers first
and second derivatives. It makes no allowance for formulas
which avoid data points in the future. They include formulas
with 5 evaluations of f(t), but none with more than 5
evaluations. The solving for the coefficients is not treated as
a matrix problem, and so it is unsurprising that they miss the
connection with Vandermonde matrices.

The text [9, Ch. 4.9] does provide formulas for numerical
differentiation, including formulas with 5 evaluations to f(t)
but none with more. They do consider formulas which only
refer to data points on one side of t—the only book the author
found to have done so. They only consider the first and second
derivative, and sadly, the formulas are not derived at all, to say
nothing of rigor. This is perhaps understandable, as this text
was written to be the “soft core” version of the following book,
by the same authors.

Meanwhile, [6, Ch. 4.1] is the “hard core” version of the
book in the previous paragraph, by the same authors. The
formulas are derived, but much differently (using Lagrange
Polynomials), and the authors restrict to the case of f ′ and
f ′′ only. They do consider formulas with 5 points, but none
larger, and they say nothing about formulas using only past
and present but not future points.

While all the books previously mentioned ignore derivatives
above the second, the text [7, Ch. 4.3] does go higher, and does

do non-symmetric spacings of the data. The derivation there
is from the Taylor Series, but that book does not consider
formulas using only past and present but not future points.

Last but not least, the classic [13, Ch. 7] has a section
on numerical differentiation, but no mention of formulas with
irregular spacing, nor those that do not require knowledge of
the future. It also does not consider those formulas that utilize
more than 3 points.

The approach to handling noisy data was taken from [4].
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APPENDIX

The appendices do not fit within the 7-page requirement of
the conference, but can be found in the full version of the
paper, available on the author’s webpage. The URL is found
on the front page of this paper.
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APPENDIX

We will now give the rigorous proof that the algorithm
is correct. Most readers will want to skip this, as it is not
necessary to understand why the algorithm works in general,
because the reader can verify its output for any particular input.
In fact, this was done in Figure 3.

A. The Derivation of the Algorithm

Suppose one has the data points f(t + δ1h), f(t + δ2h),
f(t + δ3h), . . . , f(t + δnh), and one wants to find the kth
derivative of f at t. We require k < n, and that f be n-times
differentiable, which is to say that f (n)(t) exists but is not
necessarily continuous. The objective is to find c1, c2, c3, . . . ,
cn, such that
c1
hk
f(t+δ1h)+

c2
hk
f(t+δ2h)+ · · ·+ cn

hk
f(t+δnh) ≈ f (k)(t)

with error terms small and precisely calculated.
We start with Taylor’s Formula

f(t+ δ1h) = f(t) +
i=∞∑
i=1

δi
1h

i

i!
f (i)(t)

which we simplify slightly by adopting the (extremely stan-
dard) syntax conventions that 0! = 1 and f (0)(t) = f(t). That
is to say, the 0th derivative of a function is the function itself.
We have

f(t+ δ1h) =
i=∞∑
i=0

δi
1

i!
hif (i)(t)

and therefore
j=n∑
j=1

cjf(t+ δjh) = S =
j=n∑
j=1

[
i=∞∑
i=0

cj
δi
j

i!
hif (i)(t)

]
where S is just an abbreviation, to save space typesetting the
equations. We can split the infinite sum into two parts getting

S =
j=n∑
j=1

[
i=n−1∑

i=0

cj
δi
j

i!
hif (i)(t) +

i=∞∑
i=n

cj
δi
j

i!
hif (i)(t)

]
and now intuition might lead one to believe that the right-
hand-most sum can be discarded if we assume that t < 1
and that the higher-order derivatives of f(t) are sufficiently
small. Informally, each of the terms in the right-hand series
is a multiple of tn, and if t � 1 then each successive term
is much smaller than all the terms before it. Thus, intuition
would lead one to believe that the entire sum is O (tn). In
order to do this formally, we introduce a new definition:

Definition 1: If there is a real number 0 ≤ v < 1 such that
for all r > n ∣∣∣hrf (r)(t)

∣∣∣ < ∣∣∣vr−nhnf (n)(t)
∣∣∣

then we say that “f(t) is amenable of type (h, n).”
By Lemma 1, proven in Appendix D, for any f(t) that is

amenable of type (h, n) one has
i=∞∑
i=n

hrf (r)(t) = O
(
hnf (n)(t)

)

with the big-Oh being taken as h goes to zero, and f (n)(t)
varies in any way. This is a very minor technicality and most
readers will want to skip the proof of the lemma, but we
provide a simple example in Appendix E. In any case, if f(t)
is amenable of type (h, n), then the first term of that right-
hand-most series will dominate, and we have

S =
j=n∑
j=1

[
i=n−1∑

i=0

cj
δi
j

i!
hif (i)(t) +O

(
hnf (n)(t)

)]
From this point, we make two observations. First, that the

big-Oh term has no i or j in it, and so it can be evicted from
both series (i.e. pulled across both large sigmas as a constant).1

Second, all summations are now finite sums, and so we can
reorder the terms at will—an action which is not possible with
infinite sums without use of theorems that distinguish between
uniform and non-uniform convergence. But since these terms
are finite, we merely interchange the two summations on the
right of the equal sign to get

S = O
(
hnf (n)(t)

)
+

i=n−1∑
i=0

j=n∑
j=1

cj
δi
j

i!
hif (i)(t)


and finally, since hif (i)(t)/(i!) does not contain the symbol
j, we evict it out of the innermost sum to obtain

S = O
(
hnf (n)(t)

)
+

i=n−1∑
i=0

 1
i!
hif (i)(t)

j=n∑
j=1

cjδ
i
j


Surely, then, if one were to find such c1, c2, c3, . . . , cn,

such that for all i 6= k, the right-hand-most sum were 0, and
such that for i = k, the right-hand-most sum were i!, then

j=n∑
j=1

cjf(t+ δjh) = S = O
(
hnf (n)(t)

)
+ hkf (k)(t)

and therefore

1
hk

j=n∑
j=1

cjf(t+ δjh) = f (k)(t) +O
(
hn−kf (n)(t)

)
as is desired. All that is needed is to find those c1, c2, c3, . . . ,
cn. We therefore require

j=n∑
j=1

cjδ
i
j = 0

for all i ∈ {0, 1, 2, . . . , k − 2, k − 1, k + 1, k + 2, . . . , n− 1}
and also

j=n∑
j=1

cjδ
k
j = k!

1One is tempted to write O
`
n2hnf (n)(t)

´
because there are n2 appear-

ances of this term. However, for any particular usage of this technique, n
is fixed, and so n2 is merely a constant. In any case, we derive better error
terms in Section VI. Nonetheless, the n2 magnification of the error should
give the user a moment of pause before exchanging a 5-data-point formula
with an 11-data-point formula.





δ01 δ02 δ03 · · · δ0k−1 δ0k δ0k+1 · · · δ0n−1 δ0n
δ11 δ12 δ13 · · · δ1k−1 δ1k δ1k+1 · · · δ1n−1 δ1n
δ21 δ22 δ23 · · · δ2k−1 δ2k δ2k+1 · · · δ2n−1 δ2n
...

...
...

. . .
...

...
...

. . .
...

...
δk−1
1 δk−1

2 δk−1
3 · · · δk−1

k−1 δk−1
k δk−1

k+1 · · · δk−1
n−1 δk−1

n

δk
1 δk

2 δk
3 · · · δk

k−1 δk
k δk

k+1 · · · δk
n−1 δk

n

δk+1
1 δk+1

2 δk+1
3 · · · δk+1

k−1 δk+1
k δk+1

k+1 · · · δk+1
n−1 δk+1

n
...

...
...

. . .
...

...
...

. . .
...

...
δn−2
1 δn−2

2 δn−2
3 · · · δn−2

k−1 δn−2
k δn−2

k+1 · · · δn−1
n−2 δn−2

n

δn−1
1 δn−1

2 δn−1
3 · · · δn−1

k−1 δn−1
k δn−1

k+1 · · · δn−1
n−1 δn−1

n





c1
c2
c3
...
ck
ck+1

ck
...

cn−1

cn


=



0
0
0
...
0
k!
0
...
0
0


Fig. 4. The matrix problem mentioned in the algorithm, and the formal proof.

which we can write much more simply as a matrix problem,
given in Figure 4, and ask some computer-algebra software
package to solve it for us.

This matrix has several interesting properties. First, the ijth
entry is δi−1

j . Second, this is the transpose of a Vandermonde
matrix [11]. The good news is that a Vandermonde matrix
always has an inverse (provided that δi 6= δj when i 6= j), and
so this system of equations always has exactly one solution.
This is why we required all the δs to be distinct. Since the
matrix is invertible, we are assured that the c1, c2, c3, . . . , cn
will always exist and be unique.

B. Conclusion:

We have now proved
Theorem 1: Let δ1, δ2, δ3, . . . , δn, be distinct and real,

and let 1 ≤ k < n. Furthermore, let f(t) be an n-times
differentiable function of the real line that is amenable of type
(h, n), as defined in Lemma 1. Define A to be an n×n matrix
such that Aij = δi−1

j , and ~b to be an n-dimensional vector
such that all entries are 0, except the (k+ 1)th, which equals
k!. Then

1
hk

j=n∑
j=1

cjf(t+ δjh) = f (k)(t) +O
(
hn−kf (n)(t)

)
where ~c is the unique vector such that A~c = ~b.

C. Two Technical Requirements

There were two technical requirements in the theorem. First,
is that f(t) be n-times differentiable. This means that f (k)(t)
exists and is defined for 1 ≤ k ≤ n. That also implies that
all of the these except the nth derivative are continuous. In
basically any application, the function would be smooth, which
means the kth derivative would exist and be continuous for all
k > 1. The only terms of the Taylor series that we did not
throw away during the proof were those up to and including
the (n−1)th derivative. A Taylor approximation to that many
terms requires f to be n-times differentiable [5]. The author
would like to emphasize that this unimportant for applications.

The second technical detail is the proof of the lemma.

D. The Proof of Lemma 1

We will now prove the following lemma.
Lemma 1: If there is a real number 0 ≤ v < 1 such that

for all r > n ∣∣∣hrf (r)(t)
∣∣∣ < ∣∣∣vr−nhnf (n)(t)

∣∣∣
then we say that f(t) is amenable of type (h, n). For any f(t)
that is amenable of type (h, n), it is the case that

i=∞∑
i=n

hif (i)(t) = O
(
hnf (n)(t)

)
with the big-Oh being taken as h goes to zero, and f (n)(t)
varies in any way.

Proof: Surely if v = 0 then the terms with the (n + 1)th
and higher derivatives are all zero, and the result is obvious.
We now can dispose of the 0 < v < 1 as follows. We start
with the given ∣∣∣hrf (r)(t)

∣∣∣ < ∣∣∣vr−nhnf (n)(t)
∣∣∣

so then the summations will maintain that relationship
i=∞∑
i=n

∣∣∣hif (i)(t)
∣∣∣ < i=∞∑

i=n

∣∣∣vi−nhnf (n)(t)
∣∣∣

and because v is positive, we can remove it from the absolute
value signs

i=∞∑
i=n

∣∣∣hif (i)(t)
∣∣∣ < i=∞∑

i=n

vi−n
∣∣∣hnf (n)(t)

∣∣∣
and since the right-hand absolute value term has no i in it,
that can migrate across the right-hand sigma, to obtain

i=∞∑
i=n

∣∣∣hif (i)(t)
∣∣∣ < ∣∣∣hnf (n)(t)

∣∣∣ i=∞∑
i=n

vi−n

but the right-most sum is now a simple geometric series (which
is why we required 0 < v < 1) giving us

i=∞∑
i=n

∣∣∣hif (i)(t)
∣∣∣ < ∣∣∣hnf (n)(t)

∣∣∣ 1
1− v



we could divide through by n! to obtain
i=∞∑
i=n

∣∣∣∣hi

n!
f (i)(t)

∣∣∣∣ < ∣∣∣∣hn

n!
f (n)(t)

∣∣∣∣ 1
1− v

and we are almost there.
The only flaw is that hi has n! under its denominator, instead

of i!. But since i ≥ n in that left-hand sum, that implies i! ≥ n!
and so

1
i!
≤ 1
n!

thus
i=∞∑
i=n

∣∣∣∣hi

i!
f (i)(t)

∣∣∣∣ ≤ i=∞∑
i=n

∣∣∣∣hi

n!
f (i)(t)

∣∣∣∣
Then by the triangle inequality

i=∞∑
i=n

∣∣∣∣hi

i!
f (i)(t)

∣∣∣∣ < ∣∣∣∣hn

n!
f (n)(t)

∣∣∣∣ 1
1− v

and since v is a constant, so is 1/(1− v) a constant. Thus at
long last

i=∞∑
i=n

∣∣∣∣hi

i!
f (i)(t)

∣∣∣∣ = O
(
hnf (n)(t)

)
and since

∑
|yi| ≥

∑
yi for any sequence yi we can safely

remove the absolute values and then we have
i=∞∑
i=n

hi

i!
f (i)(t) = O

(
hnf (n)(t)

)
as desired.

E. Clarification of Amenability

The strange condition of being amenable of type (h, n) can
be explained with an example. If n = 5 and h = 10−4, which
would be typical values, then we require the fairly modest
requirements that
•
∣∣f (6)(t)

∣∣ < v104
∣∣f (5)(t)

∣∣
•
∣∣f (7)(t)

∣∣ < v2108
∣∣f (5)(t)

∣∣
•
∣∣f (8)(t)

∣∣ < v31012
∣∣f (5)(t)

∣∣
•
∣∣f (9)(t)

∣∣ < v41016
∣∣f (5)(t)

∣∣
• and so on. . .
Most any function that one can think of will satisfy this

for v = 1/2. For example, even f(t) = e100t does not have
its derivatives growing fast enough to fail to be amenable
of type (10−4, 5). However, f(t) = sin

(
105t

)
does fail

this requirement, as does f(t) = e10,001t. However, setting
t = 10−6 will repair both of these cases. Thus amenability is
merely a question of setting h “sufficiently” small for a given
f(t) and degree of approximation n.

Functions arising from physical systems are unlikely to have
this problem.


